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Polyhedral vesicles: A Brownian dynamics simulation

Hiroshi Noguchi*
Department of Theoretical Studies, Institute for Molecular Science, Okazaki 444-8585, Japan

~Received 10 September 2002; revised manuscript received 5 December 2002; published 2 April 2003!

Polyhedral vesicles with a large bending modulus of the membrane, such as a gel phase lipid membrane,
were studied using a Brownian dynamics simulation. The vesicles exhibited various polyhedral morphologies
such as tetrahedron and cube shapes. We clarified two types of line defects on the edges of the polyhedrons:
cracks of both monolayers at the spontaneous curvature of the monolayerC0,0, and a crack of the inner
monolayer atC0>0. The inner monolayer curved positively around the latter defect. Our results suggest that
the polyhedral morphology is controlled byC0.
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I. INTRODUCTION

Amphiphilic molecules such as lipids and detergents fo
various structures such as micelles, cylindrical structu
and bilayer membranes in aqueous solution@1,2#. In particu-
lar, closed bilayer membranes, i.e., vesicles, are biologic
important as model systems for the plasma membrane
intracellular compartments in living cells. Various morph
logical changes in the vesicles are understood via
Helfrich elastic model@1–5#. However, this model cannot b
applied to nonbilayer structures. For example, in an inver
hexagonalHII phase, the hydrophobic interstice~void! space
opens among three cylindrical monolayers. Recently, i
considered that this interstice space is filled by the tilt def
mation of amphiphilic molecules, as shown in Fig. 1~a! @6,7#.
The molecules tilt with respect to the monolayer surfa
around the junction of the three bilayers. The monolayer s
faces are sharply bent at the junction. The effects of the
deformation have also been studied with regard to the fus
intermediates of the fluid phase membranes@8,9#.

On the other hand, polyhedral-shaped vesicles of
crometer scale size were observed in a gel phase
triangular-pyramid or prism-shaped vesicle of a monoco
ponent lipid@10#, and an icosahedral vesicle of mixtures
cationic and anionic surfactants@11#. The membranes are fla
on the faces of the polyhedrons and sharply bent at
edges. Since the bending modulus is very large in the
phase, the polyhedral vesicles would be more stable than
spherical vesicles. The free-energy loss of the defects a
edges would be less than the loss of the constant bendin
the membranes in the sphere. Thus, the large bending m
lus of the gel phase would be an essential condition for po
hedral vesicles. However, the defect structure at the edg
unresolved. Information on the edge structure is signific
to control the morphology of the polyhedral vesicles. The
vesicles are expected to be of practical value for drug de
ery.

To clarify the edge structure, theories or simulations w
molecular resolution are needed. Since molecular dynam
simulations with atomic resolution have only been appl
for the;10 ns dynamics of 1000 lipid molecules due to t
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restrictions of computational time@12–14#, coarse-grained
molecular simulations@15–26# have been applied. We stud
ied the fusion and fission dynamics of vesicles using Brow
ian dynamics@20–23#. The self-assembly into vesicles
simulated by our model@19#, a lattice Monte Carlo method
@16#, and dissipative particle dynamics@25#. However, these
simulated vesicles were flexible, and no polyhedral vesic
have been obtained.

In the present paper, we developed our previous mode
control the bending modulus of the monolayers by the ad
tion of the curvature potential of a monolayer. Since t
regular arrangement of the molecules in the gel phase is
a necessary condition to form a polyhedral vesicle, we u
the fluid phase membrane with a large bending modu
Polyhedral vesicles and two types of defects at the edge
shown in Figs. 1~b! and 1~c! are obtained. The morpholog
of the polyhedral vesicles and the defect type depend on
spontaneous curvature of the monolayer,C0.

II. METHOD

An amphiphilic molecule is modeled as rigid rods consi
ing of one hydrophilic segment (j 51) and two hydrophobic
segments (j 52,3), which are separated by a fixed distan
s. Solvent molecules are not explicitly taken into accou
and the ‘‘hydrophobic’’ interaction is mimicked by the mult
body local density potential of the hydrophobic segments.
the details of the basic model were described in our previ
papers@19,21#, we briefly explain the model here. The mo
tion of the j th segment of thei th molecule follows the un-
derdamped Langevin equation with the constraint of a lin
molecule. Amphiphilic molecules (i 51, . . . ,N) interact via

FIG. 1. Three types of line defects.~a! Tilt deformation in the
inverted hexagonal phase.~b! Cracks of both monolayers. Hydro
phobic segments are partially exposed.~c! Crack of the inner mono-
layer. Amphiphilic molecules in the inner monolayer tilt with re
spect to the boundary surfaces of the two monolayers.
©2003 The American Physical Society01-1
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a repulsive soft-core potentialU rep, an attractive hydropho
bic potentialUhp, and a curvature potentialUCV .

U5 (
iÞ i 8

U rep~ ur i , j2r i 8, j 8u!1 (
j 52,3

Uhp~r i , j !1UCV , ~1!

wherer i , j is the local density of the hydrophobic segmen
for the j th segment of thei th molecule. Both segments hav
the same soft radius,U rep(r )/«5exp@220(r /s21)#. The
hydrophobic interaction is mimicked by the potent
Uhp(r).

r i , j5 (
iÞ i 8, j 852,3

h~ ur i , j2r i 8, j 8u!, ~2!

where

h~r !5
1

exp$20~r /s21.9!%11
.

r i , j is the number of hydrophobic segments in the sph
whose radius is'1.9s.

Uhp~r!/«5H 20.5r ~r,r* 21!

0.25~r2r* !22c ~r* 21<r,r* !

2c ~r* <r!,

, ~3!

where c is given by c50.5r* 20.25. We used the value
r* 510 and 14 atj 52 and 3, respectively. At low densit
(r,r* 21), Uhp(r) acts as the pairwise potentia
2«h(r ).

To give the bending modulusk and the spontaneous cu
vatureC0 of the monolayer membranes, we use the poten
UCV of the orientational difference of neighboring mo
ecules:

UCV5 (
iÞ i 8

0.5kcv8 h~r i ,i 8!~ui2ui 82C08 r̂ i ,i 8!
2, ~4!

where the vectorui is the unit orientational vector of thei th
molecule, andr̂ i ,i 8 (r i ,i 8) is the unit vector~distance! be-
tween thei th and i 8th molecules:ui5(r i ,12r i ,3)/ur i ,12r i ,3u
and r̂ i ,i 85(r i2r i 8)/ur i2r i 8u, wherer i is the center of mass
of the i th molecule. AtC0850, this potential is similar to the
bending elastic potential used in the tethered membr
models@27,28#. When the orientational vectorsui are equal
to the normal vectors of the monolayers with no tilt defo
mation,

UCV5E 0.5kcv@~C11C22C0!222C1C21C0
2#dA ~5!

in the continuum limit, whereC1 andC2 are the two princi-
pal curvatures of a monolayer. The spontaneous curvaturC0

is equal toC08s/ r̄ nb, wherer̄ nb is the mean distance betwee

neighboring molecules andr̄ nb51.5s. On the assumption o
the hexagonal packing of molecules in the monolayers,
obtainkcv5A3kcv8 . We usedkcv8 53« to represent the rigid
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membrane, andkcv.5«. In previous papers, we estimate
the bending modulusk0 /«.0.5 ~half of the bending modu-
lus of bilayers! at kcv8 50 @21#. Sincekcv is tenfold larger
thank0, the bending elasticity is mainly given byUCV , and
the bending modulus of the monolayerk.kcv .

We mainly used the number of moleculesN51000 and
kBT/«50.2, wherekB is the Boltzmann constant andT is the
temperature. Amphiphilic molecules spontaneously fo
vesicles in a fluid phase atkBT/«50.2 andkcv8 50. The unit
length s corresponds to;1 nm. The unit time stept0
5zs2/« corresponds to;1 ns estimated from the latera
diffusion constant of phospholipids at 30° C,;1027 cm2/s
@29,30#, wherez is the friction constant of the segments
the molecules. We used three methods to obtain the ves
at kcv8 /«53 andkBT/«50.2: quenching, annealing, andkcv

increasing. In quenching, the simulation starts with spher
vesicles atkcv8 50 and the temperature is fixed atkBT/«
50.2. In annealing, vesicles are annealed fromkBT/«
50.5–0.2. Temperature decreases withkBT(t)/«5(0.3
1a)exp„ln@a/(0.31a)#t/t0…10.22a, where a50.000 01
andt05500 000t0. In kcv increasing, the coefficientkcv8 lin-
early increases fromkcv8 /«50 to 3 for 1 000 000t0 starting
with the spherical vesicles atkcv8 50.

III. RESULTS AND DISCUSSION

A. Morphology of vesicles

Vesicles exhibit various polyhedral morphologies atkcv8
53«. The number of faces,nf , of a polyhedron increases a
C0 increases. Figure 2 shows examples of the polyhe
vesicles. The edges of the polyhedrons are formed by the
defects@Figs. 1~b! and 1~c!#. The molecules at the line de
fects are distinguished using the number of neighboring m
ecules,ni

nb, as shown in Fig. 3. The numberni
nb is defined as

ni
nb5(h(r i ,i 8). The inner monolayers are divided intonf

faces by the defects. AtC0>0, the cracks of the inner mono
layer @Fig. 1~c!# occur on the edges, and the outer monola
consists of one curved face@Figs. 2~b! and 2~c!#. At C0
,0, the outer monolayer also exhibits cracks@Fig. 1~b!# on
the edges. When the deformation of the left or right side
Fig. 2~a! is formed on the entire circular-line defects, th
outer monolayer of the disk-shaped vesicles is divided i
three faces~two disks and one cylinder! or two faces, respec
tively.

Figure 4 shows the mean number of faces,^nf&, at
kBT/«50.2 using three methods: quenching, annealing,
kcv increasing. The results of annealing are the closest to
equilibrium values. With the other methods, the vesicles
often trapped in metastable states. AtC0.0, vesicles with
larger or smallernf values are obtained through quenching
kcv increasing, respectively, than through annealing. Th
the annealing method should be used to obtain regular p
hedrons. It also suggests that polyhedral vesicles w
smallernf are formed whenC0 is altered by changes in th
solution conditions, such as the salt concentration, afte
fluid-gel transition.

Flip-flop motion, which is the transverse motion betwe
the inner and outer monolayers, frequently occurs atkBT/«
1-2
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50.5. The number of molecules in the inner monolayer
creases with an increase innf at kBT/«50.5, since tilting
molecules on the line defects share a larger area. The r
g in of the molecules in the inner monolayer a
0.31(60.01) and 0.292(60.003) atC0s520.11 (nf52)
and C0s50.23 (nf57.3), respectively. On the other han
flip-flop motion rarely occurs and the ratiog in is fixed at
g in50.328(60.003) at the fixed temperaturekBT/«50.2. In
typical experimental conditions, flip-flop motion is ver
slow, and the half-life is more than several hours, even in
fluid phase@31,32#. Thus experimentally, the ratiog in of the
polyhedral vesicles should not reach an equilibrium value
well as the simulation at the fixed temperaturekBT/«50.2.

FIG. 2. Sliced snapshots of vesicles at temperaturekBT/«50.2
and number of moleculesN51000. ~a! A disk-shaped~dihedral!
vesicle at the spontaneous curvature of the monolayerC0s
520.11. ~b! A triangular-pyramid shaped~tetrahedral! vesicle at
C0s50.058. ~c! A pentagonal-prism-shaped~heptahedral! vesicle
at C0s50.23. Gray spheres and white cylinders represent hyd
philic and hydrophobic segments of amphiphilic molecules, resp
tively.
04190
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In the polyhedrons obtained, three edges are connecte
any vertex. The connections of more edges are unstable
are not formed. The number of edges,ne, then equals
1.5-fold the number of vertices,nv , because each edge co
tacts two vertices. We obtainne53(nf22) and nv52(nf

22) from this relationship and Euler’s formula for a conve
polyhedron (nf1nv2ne52). At nf>6, multiple types of
polyhedrons with the same number of faces exist in this ru
However, we obtained only one or two types of polyhedro
i.e., cube (46) at nf56; pentagonal prism (45,52) and
(31,43,53) at nf57; (44,54) at nf58; (43,56) and (44,54,61)
at nf59, where (pq) represents a polyhedron withq p gons.
Thus, polyhedrons with low symmetry or including sma
faces are not formed very much.

At a large spontaneous curvature,C0s50.35 andkBT/«
50.5, a vesicle divides into two or three vesicles as sho
in Fig. 5. Some regions of the membrane bend outside w
cracks of the outer monolayer, and the membrane is divi
at these cracks@Figs. 5~b! and 5~c!#. At kBT/«50.2, these
cracks of the outer monolayer are stable, and vesicles ex
complex morphologies with concave edges. The morphol
of the polyhedral vesicles depends on the size of the vesic
Vesicles withN52000 exhibit concave edges even atC0s
50.23.

-
c-

FIG. 3. Line defects~edges! of the tetrahedral vesicle in Fig
2~b!. The snapshot is viewed from the same viewpoint. The m
ecules with the number of neighboring moleculesni

nb,4.5 in the
inner monolayer are shown.

FIG. 4. Spontaneous curvatureC0 dependence of the mea
number of faceŝnf& of polyhedrons obtained by three methods
N51000 andkBT/«50.2.
1-3
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B. Curvature of the membrane

In this section we describe two types of the curvature
monolayer membrane: the curvature~splay! for molecules
and the curvature of membrane surface. The difference
tween these two curvatures is caused by the tilt deforma
@7#. Figure 6~a! shows theC0 dependence of the curvature
of four polyhedrons atC0>0, whereCam is the curvature
~splay! for amphiphilic molecules, ^Cam& r̄ nb5@((ui

2ui 8) r̂ i ,i 8h(r i ,i 8)#/@(h(r i ,i 8)#. The mean curvaturêCam
out&

of the outer monolayer is almost independent ofC0 andnf at
C0>0. At C0,0, ^Cam

out& decreases because of the cracks
the outer monolayers:̂Cam

out&s50.0325(60.0005) atC0s

FIG. 5. Sequential sliced snapshots of vesicle fission atC0s
50.35, kBT/«50.5, andN51000. The initial state is a spherica
vesicle atkcv8 /«50 andkBT/«50.5.

FIG. 6. Spontaneous curvatureC0 dependence of~a! the mean
curvature for amphiphilic molecules,^Cam& and ~b! the mean cur-
vature for the monolayer surface,^Csf&, and the difference,̂Cdif&
5^Cam2Csf& at N51000, kBT/«50.2, andg in50.328(60.003).
The superscripts ‘‘in’’ and ‘‘out’’ represent the inner and out
monolayers, respectively. Circles: rugby-ball shaped trihedr
Squares: tetrahedron. Triangles: triangular prism. Diamonds: c
04190
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520.11. On the other hand,^Cam
in & of the inner monolayer

increases with an increase inC0 and nf , since the inner
monolayers curve positively around the crack of the inn
monolayers. The mean curvature^Cam

in & for a larger nf is
closer to C0, although more hydrophilic segmen
contact the hydrophobic segments at the line defects.
curvatureCam does not coincide with the curvature of th
monolayers, since molecules can tilt with respect to
monolayer surface. To clarify this tilt, we estimated the c
vature Csf for the monolayer surface,̂ Csf& r̄ nb5@((ni

2ni 8) r̂ i ,i 8h(r i ,i 8)#/@(h(r i ,i 8)#, whereni is the normal vector
of the monolayer surface atr i . We definedni as the vector
minimizing « i5(h(r i ,i 8)(ni r̂ i ,i 8)

2 when ni
nb.2.5. This

minimizing vector is the eigenvector with the smallest eige
value of the moment tensor of inertia of the neighbori
molecules. Figure 6~b! shows the curvatureŝCsf

in& of the
inner monolayer surface and the difference^Cdif

in & between
the two curvatures. The inner monolayer surface tilts w
respect to the boundary surfaces of the two monolayers,
the molecules in the inner monolayer tilt with respect to t
inner monolayer. Both tilts increaseCam. Since the molecu-
lar tilt in the inner monolayer,̂Cdif

in &, is almost independen
of nf , the length of the line defects only changes the cur
ture ^Csf

in& of the inner monolayer surface. The length of lin
defects increases withnf . Thus the polyhedral morpholog
at equilibrium should be determined by the effects of the l
defects on̂ Csf

in& and the hydrophobic interaction.
The curvature differenceCdif is also a useful paramete

for the flexible membranes. We found that the spontane
curvatureC0 can be estimated using this tilt deformatio
with respect to the monolayer surface. The flexible me
branes atkcv8 50 have positive spontaneous curvature
duced by the asymmetric attractive interaction. Three s
ments have the same excluded volume, and the segme
the hydrophobic end,j 53, has an attractive interaction, a
though the segment of the hydrophilic end,j 51, has no
attractive interaction. The probability distribution ofCam ex-
hibits an asymmetric shape rather than the Gaussian curv
shown in Fig. 7. We estimated the effective spontaneous
.

e.

FIG. 7. Probability distribution of the curvatures,Cam, for mol-
ecules atkcv8 50. Solid line: flat bilayer with 1.11 molecules pers2.
Broken line: inner monolayer of vesicles withN51000. Broken-
and-dotted line: outer monolayer of vesicles withN51000.
1-4
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vatureC0 from theCsf dependence onCdif , as shown in Fig.
8. At Csf,C0 or Csf.C0, molecules tilt to reduce
uCam2C0u and Cdif shows a positive or negative value, r
spectively. Thus, we obtainC0s.0.04 at kcv8 50 and
kBT/«50.2.

IV. CONCLUSION

We have clarified that a vesicle with a large bendi
modulus forms polyhedral morphologies. The cracks of
inner or both monolayers are formed on the edges of
polyhedrons. The face numbernf of the polyhedron increase
with C0. At a large spontaneous curvature, a vesicle divi
into smaller vesicles. In the polyhedral vesicles, molecu

FIG. 8. Curvature of the monolayer surface,Csf , vs the differ-
ence of the two curvatures,Cdif . These values are obtained in th
simulations for a flat bilayer, tube-shaped vesicles, and sphe
vesicles.
r-

-

o

.
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tilt with respect to the monolayer surfaces to reduce the c
vature energy. The effective spontaneous curvature o
membrane can be estimated using this tilt deformation.

The line defects may be interpreted using the correct
terms of the Helfrich model, the local minimum at a larg
C11C2. The morphology of the polyhedral vesicles ma
then be obtained from the Euler-Lagrange differential eq
tion. Similar deformations to the crack of the inner mon
layer are seen in our daily experience. When a rubber hos
strongly bent, one side of the hose becomes hollow and
other side bends smoothly.

The morphology of polyhedral vesicles depends on
properties of the molecules. The regular arrangement of m
ecules in gel phase membranes affects the morphology.
hexagonal packing of molecules should stabilize the trian
lar and hexagonal faces. The simulation results suggest
polyhedral vesicles are experimentally formed even in
fluid phase when the bending modulus is sufficiently lar
The stability of the cracks is dependent on its atomic str
ture. Molecular simulations with atomic resolution are e
pected to solve the crack structure of lipid membranes
some multicomponent vesicles, phase separation occu
the edges or vertices of the polyhedrons. Duboiset al. re-
ported that the segregated anionic surfactants form pore
the vertices@11#. Various polyhedral vesicles are likely to b
experimentally observed under the control ofC0 and other
conditions.
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